Как назывался первый советский компьютер
Перейти к содержимому

Как назывался первый советский компьютер

  • автор:

Как в СССР появились первые персональные компьютеры

Первый ПК в СССР появился в 1980 году, а в середине 80-х его упрощенную версию любители массово собирали по схемам из журнала «Радио». Причем детали для этого компьютера продавали в виде набора для самостоятельной сборки.

В 1980 году создатели первого в Союзе персонального компьютера представили свой проект заместителю министра радиопромышленности Николаю Горшкову. Тогда тот сказал буквально следующее: «Ребята, вы занимаетесь ерундой. Вы вообще знаете, что такое компьютер? Это сто квадратных метров помещения, 30−50 человек обслуживающего персонала, 30 литров спирта на промывку контактов и мегаватт электроэнергии в месяц. Вот это — компьютер. Он персональным быть не может и никогда не будет. Персональной бывает машина, дача, пенсия. Персональный компьютер — это нонсенс».

Первый компактный компьютер — советский!

Конечно, 30 литров спирта — аргумент серьезный. Тем не менее, первый в мире компактный компьютер создали именно в СССР. Случилось это еще в 1963 году в Ленинграде. Руководил проектом инженер Филипп Георгиевич Старос (урожденный Альфред Сарант). Это был коммунист из США, работавший на советскую разведку и бежавший в СССР под угрозой ареста.

Собранная командой Староса мини-ЭВМ называлась УМ1-НХ — «Управляющая машина для народного хозяйства».

 Первый в истории компактный компьютер. Правда к нему прилагались еще и шкафы с устройствами ввода-вывода с жидкостным охлаждением (расход воды до 500 л/ч)

Первая в мире мини-ЭВМ работала на полупроводниках и представляла собой системный блок размером 880×535х330 мм. Возможно, у современного пользователя такие габариты не ассоциируются с понятием мини-ЭВМ, но по сравнению с суперкомпьютерами того времени это был прорыв. Правда, кроме системного блока, у УМ1-НХ имелись еще и отдельные устройства связи с объектом (УСО) — в современной терминологии устройства ввода-вывода. Последние тоже имели размеры 880×535х330 мм, но размещались вместе с блоками питания в шкафах с габаритами 1200×650х1660 ммм, по две штуки на шкаф. Шкафы имели водяное охлаждение с расходом воды до 500 л/час.

Информацию компьютер получал и выдавал либо на перфоленте, либо с помощью аналого-цифровых и цифро-аналоговых преобразователей. Ну, а производительность его составляла либо 5 тыс. операций в секунду по сложению, либо 1 тыс. операций в секунду по умножению и делению.

Перфолента — один из первых носителей компьютерных программ

УМ1-НХ производили серийно и успешно применяли на производстве — впоследствии он управлял автоматикой на Череповецком металлургическом комбинате, причем аж до середины 1990-х годов. Еще пара УМ1-НХ контролировала работу второго энергоблока Белоярской АЭС.

Щит управления энергоблоком на Белоярской АЭС

Как СССР благодаря Никсону получила микропроцессоры

После УМ1-НХ советская, да и не только советская, вычислительная техника развивалась в направлении суперкомпьютеров. Сдвиг произошел в 1971 году, когда компания Intel сделала микросхему 4004 — первый микропроцессор. А в 1972 году президент США Ричард Никсон разрешил поставлять оборудование для производства таких микропроцессоров в СССР.

Когда в 1974 году все та же Intel создала микропроцессор 8080А, сравнимый по мощности с большими ЭВМ, в США на его основе начали делать первый в мире персональный компьютер Altair-8800. Напомним, советский УМ1-НХ хоть и был первым компактным компьютером, но предназначался для промышленных целей. А Советский Союз благодаря Никсону уже имел аппаратную базу для производства таких процессоров. И, конечно, всего через пару лет без смущения скопировал Intel 8080А. Аналог запустили в производство под индексом МПК-25 (расшифровывается как микропроцессор к 25-му съезду КПСС), а позже переименовали в КР580ИК80.

Микропроцессорная лаборатория «Микролаб КР580ИК80 907». Intel inside! Ну, почти

Применяли его, например, в микропроцессорной лаборатории «Микролаб КР580ИК80 907» — это было устройство для обучения студентов программированию. Но сделать на его основе персональный компьютер? Официальным структурам было не до глупостей (см. начало статьи), а коммерческих тогда не существовало. Но талантливые инженеры — были!

Посылка из-за границы: «Микро-80»

Как рассказывает один из создателей первого советского ПК Геннадий Зеленко, разработчики аппаратуры в СССР в конце года обычно заказывали список деталей, которые понадобятся им в следующем году. Импортные комплектующие туда тоже входили — надо же было перенимать передовой опыт. При этом в список попадало и то, что требовалось для личных нужд. Зеленко работал в ракетно-космическом НИИ и тоже такие списки подавал. Однажды, прочитав о микропроцессорах в иностранном журнале, он заказал Intel 8080А. Посылка пришла нескоро, через полгода. На тот момент Зеленко уже уволился из того института, но коробку с процессором ему отдали коллеги. Она никому была не нужна — никто не представлял, что это такое. На основе Intel 8080А Зеленко и его товарищи собрали копьютер. Сделать это им удалось отчасти за счет документации, прилагаемой к процессору, но в основном благодаря схемам из американских журналов.

Компьютер «Микро-80»

Эта машина и стала первым советским персональным компьютером. Называлась она «Микро-80» — финальный вариант был готов накануне 1980 года. О реакции чиновников на нее вы уже знаете, но команда молодых создателей «Микро-80» не успокоилась.

Ребята работали в Московском институте электронного машиностроения и компьютер успешно применяли для утилитарных целей. Например, составляли гороскопы, печатали диссертации — после ряда приключений удалось подсоединить к «Микро-80» импортный матричный принтер. А еще получилось уйти от перфолент, на которые изначально записывали программы, к магнитным лентам. Информацию записывали на бытовые дискеты: на 90-минутную помещался мегабайт информации.

В 1982 году ребята отнесли схему «Микро-80» в журнал «Радио», выходивший на тот момент тиражом около 900 тыс. экз. Ее опубликовали. В теории, поскольку советский аналог Intel 8080А существовал и продавался, собрать такой ПК могли все желающие. Но на практике схема была слишком сложной — более 200 микросхем — и, что важнее, большинство комплектующих в свободной продаже отсутствовали. Так что массовым «Микро-80» так и не стал.

Компьютер «Радио-86РК»

Зато на его основе к 1986 году та же команда разработала схему компьютера «Радио-86РК» — всего из 29 микросхем. Детали к тому моменту не стали более доступными, но редакция журнала «Радио» обратились к представителям промышленности. В итоге в Союзе начали выпускать комплекты для сборки «Радио-86РК» — от «Электроники КР-01» до «Электроники КР-04». Цена набора составляла 395 рублей. И вот тогда персональный компьютер стал действительно массовым — не до такой степени, как сейчас, но все же. Читатели постарше наверняка уже воскликнули — а как же другие советские персональные компьютеры? Да, в середине 1980-х в стране начали выпускать клоны западных машин. И их было немало. Например, «Агат» был аналогом Apple II, «Искра 1030» — IBM PC/XT.

Компьютер «Агат», аналог Apple II

Были и оригинальные разработки — в 1985 году инженер Анатолий Федорович Волков создал ПК «Специалист». Увы, первая схема была слишком сложной, а к моменту ее доработки и упрощения уже существовал «Радио-86РК». Ну, а в конце 1980-х — начале 1990-х пришли клоны ZX Spectrum, но эта история уже из другой эпохи.

Сделано в СССР. История развития отечественного компьютеростроения

В этом материале мы представим вам этапы развития компьютеростроения в СССР. Сегодня на политической карте мира нет такой страны. Союз из 15 республик просуществовал 70 лет и в начале 90-х развалился на отдельные государства. За это время в мировых кругах не раз звучало выражение «сделано в СССР». Так какое же компьютерное наследие оставили нам советские изобретатели?

Не так давно мы рассказали вам про архитектуру новейшего российского процессора «Эльбрус-4С», разработанного компанией МЦСТ. Была затронута и ее история развития. На сегодняшний день эта фирма — чуть ли не единственный оплот отечественного компьютеростроения. На наш взгляд, было бы неправильно не уделить немного внимания разработкам СССР. Да, советское компьютеростроение нельзя назвать передовым, однако инженеры, ученые и государство все же уделяли ему достаточное количество времени и сил.

Персональный компьютер «Агат»

МЭСМ

Первая советская электронно-вычислительная машина была сконструирована и введена в эксплуатацию недалеко от города Киева. С появлением первого компьютера в Союзе и на территории континентальной Европы связывают имя Сергея Лебедева (1902-1974 гг.). В 1997 году ученая мировая общественность признала его пионером вычислительной техники, и в том же году Международное компьютерное общество выпустило медаль с надписью: «С.А. Лебедев — разработчик и конструктор первого компьютера в Советском Союзе. Основоположник советского компьютеростроения». Всего при непосредственном участии академика было создано 18 электронно-вычислительных машин, 15 из которых переросли в серийное производство.

Сергей Алексеевич Лебедев — основоположник вычислительной техники в СССР

Источник изображения В 1944-м, после назначения на должность директора Института энергетики АН УССР, академик с семьей переезжает в Киев. До создания революционной разработки остается еще долгих четыре года. Данный институт специализировался по двум направлениям: электротехническое и теплотехническое. Волевым решением директор разделяет два не совсем совместимых научных направления и возглавляет Институт электроники. Лаборатория института переезжает в предместье Киева (Феофания, бывший монастырь). Именно там и воплощается в жизнь давнишняя мечта профессора Лебедева — создать электронно-цифровую счетную машину.

Первый компьютер СССР

В 1948 году модель первого отечественного компьютера была собрана. Устройство занимало почти все пространство комнаты площадью в 60 м 2 . В конструкции было так много элементов (особенно нагревательных), что при первом запуске машины выделилось столько тепла, что пришлось даже разобрать часть кровли. Первую модель советского компьютера назвали просто — Малая Электронная Счетная Машина (МЭСМ). Она могла производить до трех тысяч счетно-вычислительных операций в минуту, что по меркам того времени было заоблачно много. В МЭСМ был применен принцип электронной ламповой системы, который уже апробирован западными коллегами («Колосс Марк 1» 1943 г., «ЭНИАК» 1946 г.).

  • двоичная с фиксированной запятой перед старшим разрядом система счета;
  • 17 разрядов (16 плюс один на знак);
  • емкость ОЗУ: 31 для чисел и 63 для команд;
  • емкость функционального устройства: аналогичная ОЗУ;
  • трехадресная система команд;
  • производимые вычисления: четыре простейших операции (сложение, вычитание, деление, умножение), сравнение с учетом знака, сдвиг, сравнение по абсолютной величине, сложение команд, передача управления, передача чисел с магнитного барабана и пр.;
  • вид ПЗУ: триггерные ячейки с вариантом использования магнитного барабана;
  • система ввода данных: последовательная с контролем через систему программирования;
  • моноблочное универсальное арифметическое устройство параллельного действия на триггерных ячейках.

Несмотря на максимально возможную автономную работу МЭСМ, определение и устранение неполадок все же происходило вручную или посредством полуавтоматического регулирования. Во время испытаний компьютеру было предложено решить несколько задач, после чего разработчики заключили, что машина способна производить вычисления, неподвластные человеческому разуму. Публичная демонстрация возможностей малой электронной счетной машины произошла в 1951 году. С этого момента устройство считается введенным в эксплуатацию первым советским электронно-вычислительным аппаратом. Над созданием МЭСМ под руководством Лебедева работало всего 12 инженеров, 15 техников и монтажниц.

Несмотря на ряд существенных ограничений, первый компьютер, сделанный в СССР, работал в соответствии с требованиями своего времени. По этой причине машине академика Лебедева было доверено проводить расчеты по решению научно-технических и народно-хозяйственных задач. Опыт, накопленный в процессе разработки машины, был использован при создании БЭСМ, а сама МЭСМ рассматривалась в качестве действующего макета, на котором отрабатывались принципы построения большой ЭВМ. Первый «блин» академика Лебедева на пути развития программирования и разработок широкого круга вопросов вычислительной математики не оказался комом. Машину применяли как для текущих задач, так и рассматривали прототипом более усовершенствованных аппаратов.

Успех Лебедева был высоко оценен в высших эшелонах власти, и в 1952 году академик получил назначение на руководящую должность института в Москве. Малая электронная счетная машина, произведенная в единичном экземпляре, использовалась до 1957 года, после чего устройство демонтировали, разобрали на составляющие и поместили в лабораториях Политехнического института в Киеве, где части МЭСМ служили студентам в лабораторных исследованиях.

ЭВМ серии «М»

Пока академик Лебедев работал над электронно-вычислительным устройством в Киеве, в Москве образовывалась отдельная группа электротехников. Сотрудники Энергетического института имени Кржижановского Исаака Брука (электротехник) и Башира Рамеева (изобретатель) в 1948 году подают в патентное бюро заявку на регистрацию проекта собственной ЭВМ. В начале 50-х Рамеев становится руководителем отдельной лаборатории, где и предназначалось появиться этому устройству. Буквально за один год разработчики собирают первый прототип машины М-1. По всем техническим параметрам это было устройство, намного уступающее МЭСМ: всего 20 операций в секунду, тогда как машина Лебедева показывала результат в 50 операций. Неотъемлемым преимуществом М-1 были ее габариты и энергопотребление. В конструкции использовано всего 730 электрических ламп, они требовали 8 кВт, а весь аппарат занимал лишь 5 м 2 .

В 1952-м году появилась М-2, производительность которой выросла в сто раз, а число ламп увеличилось лишь вдвое. Этого удалось достичь за счет использования управляющих полупроводниковых диодов. Но инновации требовали больше энергии (М-2 потребляла 29 кВт), да и площадь конструкция заняла в четыре раза больше, чем предшественница (22 м 2 ). Счетных возможностей данного устройства вполне хватало для реализации ряда вычислительных операций, но серийное производство так и не началось.

«Малютка» ЭВМ М-2

Источник Модель М-3 снова стала «малюткой»: 774 электронные лампы, потребляющие энергию в размере 10 кВт, площадь — 3 м 2 . Соответственно, уменьшились и вычислительные возможности: 30 операций в секунду. Но для решения многих прикладных задач этого вполне было достаточно, поэтому М-3 выпускалась небольшой партией, 16 штук.

В 1960 году разработчики довели производительность машины до 1000 операций в секунду. Данную технологию заимствовали далее для электронно-вычислительных машин «Арагац», «Раздан», «Минск» (произведены в Ереване и в Минске). Эти проекты, реализованные параллельно с ведущими московскими и киевскими программами, показали серьёзные результаты уже позже, в период перехода ЭВМ на транзисторы.

«Стрела»

Под руководством Юрия Базилевского в Москве создается ЭВМ «Стрела». Первый образец устройства был завершен в 1953 году. «Стрела» (как и М-1) содержала память на электронно-лучевых трубках (МЭСМ использовала триггерные ячейки). Проект данной модели компьютера был настолько удачным, что на Московском заводе счетно-аналитических машин началось серийное производство этого типа продукции. Всего за три года было собрано семь экземпляров устройства: для пользования в лабораториях МГУ, а также в вычислительных центрах Академии наук СССР и ряда министерств.

ЭВМ «Стрела»

Источник «Стрела» выполняла 2 тысячи операций в секунду. Но аппарат был весьма массивным и потреблял 150 кВт энергии. В конструкции использовалось 6,2 тысячи ламп и более 60 тысяч диодов. «Махина» занимала площадь в 300 м 2 .

БЭСМ

После перевода в Москву (в 1952 году), в Институт точной механики и вычислительной техники, академик Лебедев взялся за производство нового электронно-вычислительного устройства — Большой Электронной Счетной Машины, БЭСМ. Заметим, что принцип построения новой ЭВМ во многом был заимствован у ранней разработки Лебедева. Реализация данного проекта послужила началом самой успешной серии советских компьютеров. БЭСМ осуществляла уже до 10 000 исчислений в секунду. При этом использовалось всего 5000 ламп, а потребляемая мощность составляла 35 кВт. БЭСМ являлась первой советской ЭВМ «широкого профиля» — её изначально предполагалось предоставлять учёным и инженерам для проведения расчетов различной сложности.

Модель БЭСМ-2 разрабатывалась для серийного производства. Число операций в секунду довели до 20 тысяч. После испытаний ЭЛТ и ртутных трубок, в данной модели оперативная память уже была на ферритовых сердечниках (основной тип ОЗУ на следующие 20 лет). Серийное производство, начавшееся на заводе имени Володарского в 1958 году, показало результаты в 67 единиц техники. БЭСМ-2 положила начало разработок военных компьютеров, руководивших системами ПВО: М-40 и М-50. В рамках этих модификаций был собран первый советский компьютер второго поколения — 5Э92б, и дальнейшая судьба серии БЭСМ уже оказалась связана с транзисторами. Переход на транзисторы в советской кибернетике прошёл плавно. Особо уникальных разработок в этот период отечественного компьютеростроения не значится. В основном старые компьютерные системы переукомплектовывали под новые технологии.

Большая электронная счетная машина (БЭСМ)

Источник Полностью полупроводниковая ЭВМ 5Э92б, спроектированная Лебедевым и Бурцевым, была создана под конкретные задачи противоракетной обороны. Она состояла из двух процессоров (вычислительного и контроллера периферийных устройств), имела систему самодиагностики и допускала «горячую» замену вычислительных транзисторных блоков. Производительность равнялась 500 тысячам операций в секунду для основного процессора и 37 тысяч – для контроллера. Столь высокая производительность дополнительного процессора была необходима, поскольку в связке с компьютерным блоком работали не только традиционные системы ввода-вывода, но и локаторы. ЭВМ занимала больше 100 м 2 .

Уже после 5Э92б разработчики снова возвратились к БЭСМ. Основная задача здесь — производство универсальных компьютеров на транзисторах. Так появились БЭСМ-3 (осталась в качестве макета) и БЭСМ-4. Последняя модель была выпущена в количестве 30 экземпляров. Вычислительная мощность БЭСМ-4 — 40 операций в секунду. Устройство в основном применялось как «лабораторный образец» для создания новых языков программирования, а также как прототип для конструирования более усовершенствованных моделей, таких как БЭСМ-6. За всю историю советской кибернетики и вычислительной техники БЭСМ-6 считается самой прогрессивной. В 1965 году это компьютерное устройство было самым передовым по управляемости: развитая система самодиагностики, несколько режимов работы, обширные возможности по управлению удалёнными устройствами, возможность конвейерной обработки 14 процессорных команд, поддержка виртуальной памяти, кэш команд, чтение и запись данных. Показатели вычислительных способностей — до 1 млн операций в секунду. Выпуск данной модели продолжался вплоть до 1987 года, а использование — до 1995-го.

«Киев»

После того, как академик Лебедев отбыл в «Златоглавую», его лаборатория вместе с персоналом перешла под руководство академика Б.Г. Гнеденко (директор Института математики АН УССР). В этот период был взят курс на новые разработки. Так, зарождается идея создания компьютера на электронных лампах и с памятью на магнитных сердечниках. Он получил название «Киев». При его разработке впервые был применен принцип упрощенного программирования — адресный язык. В 1956 году бывшую лебедевскую лабораторию, переименованную в Вычислительный центр, возглавил В.М. Глушков (сегодня данное отделение действует как Институт кибернетики имени академика Глушкова НАН Украины). Именно под началом Глушкова «Киев» удалось завершить и ввести в эксплуатацию. Машина остается на службе в Центре, второй образец компьютера «Киев» был приобретен и собран в Объединенном институте ядерных исследований (г. Дубна, Московская область).

Виктор Михайлович Глушков

Источник изображения Впервые в истории применения компьютерной техники, с помощью «Киева» удалось наладить дистанционное управление технологическим процессами металлургического комбината в Днепродзержинске. Заметим, что объект испытаний был удален от машины почти на 500 километров. «Киев» был вовлечен в ряд экспериментов по искусственному интеллекту, машинному распознаванию простых геометрических фигур, моделированию автоматов для распознавания печатных и письменных букв, автоматическому синтезу функциональных схем. Под руководством Глушкова на машине была апробирована одна из первых систем управления базами данных реляционного типа («Автодиректор»).

Хотя основу устройства составляли те же электронные лампы, у «Киева» уже было феррит-трансформаторное ЗУ с объемом в 512 слов. Также аппарат использовал блок внешней памяти на магнитных барабанах с общим объемом в девять тысяч слов. Вычислительная мощность этой модели компьютера в триста раз превышала возможности МЭСМ. Структура команд — аналогичная (трехадресная на 32 операции). «Киев» имел собственные архитектурные особенности: в машине был реализован асинхронный принцип передачи управления между функциональными блоками; несколько блоков памяти (ферритовая оперативная память, внешняя память на магнитных барабанах); ввод и вывод чисел в десятичной системе счисления; пассивное запоминающее устройство с набором констант и подпрограмм элементарных функций; развитая система операций. Устройство производило групповые операции с модификацией адреса для повышения эффективности обработки сложных структур данных.

Советские ЭВМ, разработанные в 50-х

В 1955 году лаборатория Рамеева переехала в Пензу для разработки ещё одной ЭВМ под названием «Урал-1» — менее затратной, от того и массовой машины. Всего 1000 ламп с энергопотреблением в 10 кВт — это позволило существенно снизить производственные затраты. «Урал-1» выпускался до 1961-го года, всего было собрано 183 компьютера. Их устанавливали в вычислительных центрах и конструкторских бюро по всему миру. Например, в центре управления полётами космодрома «Байконур». «Урал 2-4» также был на электронных лампах, но уже использовал оперативную память на ферритовых сердечниках, выполнял по несколько тысяч операций в секунду.

Источник Московский государственный университет в это время проектирует собственный компьютер — «Сетунь». Он также пошел в массовое производство. Так, на Казанском заводе вычислительных машин было выпущено 46 таких компьютеров. «Сетунь» — электронно-вычислительное устройство на троичной логике. В 1959 году эта ЭВМ со своими двумя десятками вакуумных ламп выполняла 4,5 тысячи операций в секунду и потребляла 2,5 кВт энергии. Для этого использовались феррито-диодные ячейки, которые советский инженер-электротехник Лев Гутенмахер опробовал ещё в 1954 году при разработке своей безламповой электронной вычислительной машины ЛЭМ-1.

«Сетуни» благополучно функционировали в различных учреждениях СССР. При этом создание локальных и глобальных компьютерных сетей требовало максимальную совместимость устройств (т.е. двоичная логика). Будущее компьютеров стояло за транзисторами, тогда как лампы оставались пережитком прошлого (как когда-то механические реле).

«Днепр»

В свое время Глушкова называли новатором, он не раз выдвигал смелые теории в области математики, кибернетики и вычислительной техники. Многие из его инноваций были поддержаны и внедрены в жизнь еще при жизни академика. Но всецело оценить тот весомый вклад, который сделал ученый в развитие этих направлений, помогло время. С именем В.М. Глушкова отечественная наука связывает исторические вехи перехода от кибернетики к информатике, а там — к информационным технологиям. Институт кибернетики АН УССР (до 1962 года — Вычислительный центр АН УССР), возглавляемый выдающимся ученым, специализировался на усовершенствовании компьютерной вычислительной техники, разработке прикладного и системного программного обеспечения, систем управления промышленным производством, а также сервисов обработки информации прочих сфер деятельности человека. В Институте были развернуты масштабные исследования по созданию информационных сетей, периферии и компонентов к ним. Можно с уверенностью заключить, что в те годы усилия ученых были направлены на «покорение» всех основных направлений развития информационных технологий. При этом любая научно обоснованная теория тут же воплощалась в жизнь и находила свое подтверждение на практике.

Следующий шаг в отечественном компьютеростроении связан с появлением электронно-вычислительного устройства «Днепр». Этот аппарат стал первым для всего Союза полупроводниковым управляющим компьютером общего назначения. Именно на базе «Днепра» появились попытки серийного производства компьютерно-вычислительной техники в СССР.

Источник Эта машина была разработана и сконструирована всего за три года, что считалось очень незначительным временем для такого проектирования. В 1961 году произошло переоснащение многих советских промышленных предприятий, и управление производством легло на плечи ЭВМ. Глушков позже попытался объяснить, почему удалось так быстро собрать аппараты. Оказывается, еще на стадии разработок и проектирования ВЦ тесно сотрудничал с предприятиями, где предполагалось установить компьютеры. Анализировались особенности производства, этапность, а также выстраивались алгоритмы всего технологического процесса. Это позволило более точно запрограммировать машины, исходя из индивидуальных промышленных особенностей предприятия. Было проведено несколько экспериментов с участием «Днепра» по удаленному управлению производствами разной специализации: сталелитейным, судостроительным, химическим. Заметим, что в этот же период западные конструкторы спроектировали аналогичный отечественному полупроводниковый компьютер универсального управления RW300. Благодаря проектированию и введению в эксплуатацию ЭВМ «Днепр» удалось не только сократить дистанцию в развитии компьютерной техники между нами и Западом, но и практически ступать «нога в ногу».

Компьютеру «Днепр» принадлежит еще одно достижение: устройство производилось и использовалось как основное производственно-вычислительное оборудование на протяжении десяти лет. Это (по меркам компьютерной техники) достаточно значительный срок, так как для большинства подобных разработок этап модернизации и усовершенствования исчислялся пятью-шестью годами. Эта модель компьютера была настолько надежной, что ей было доверено отслеживать экспериментальный космический полет шатлов «Союз-19» и «Аполлон», состоявшийся в 1972 году. Впервые отечественное компьютеростроение вышло на экспорт. Также был разработан генеральный план строительства специализированного завода по производству вычислительной компьютерной техники — завод вычислительных и управляющих машин (ВУМ), расположенный в Киеве.

  • двухадресная система команд (88 команд);
  • двоичная система счисления;
  • 26 двоичных разрядов с фиксированной запятой;
  • оперативное запоминающее устройство на 512 слов (от одного до восьми блоков);
  • вычислительная мощность: 20 тысяч операций сложения (вычитания) в секунду, 4 тысячи операций умножения (деления) в тех же временных частотах;
  • размер аппарата: 35-40 м 2 ;
  • энергопотребление: 4 кВт.

«Промінь» и ЭВМ серии «МИР»

1963 год становится переломным для отечественного компьютеростроения. В этот год на заводе по производству вычислительных машин в Северодонецке производится машина «Промінь» (с укр. — луч). В этом аппарате впервые были использованы блоки памяти на металлизированных картах, ступенчатое микропрограммное управление и ряд других инноваций. Основным назначением этой модели компьютера считалось произведение инженерных расчетов различной сложности.

Украинский компьютер «Промінь» («Луч»)

  • двоично-десятичная система счисления;
  • объем ОЗУ: 140 слов;
  • ввод данных: с металлизированных перфокарт или штекерный ввод;
  • количество одномоментно запоминающихся команд: 100 (80 — основные и промежуточные, 20 — константы);
  • одноадресная система команд с 32 операциями;
  • вычислительная мощность – 1000 простейших задач в минуту, 100 вычислений по умножению в минуту.

Сразу за моделями серии «Промінь» появилось электронно-вычислительное устройство с микропрограммным выполнением простейших вычислительных функций — МИР (1965 г.). Заметим, что в 1967 году на мировой технической выставке в Лондоне машина МИР-1 получила достаточно высокую экспертную оценку. Американская компания IBM (ведущий мировой производитель-экспортер компьютерной техники в то время) даже приобрел несколько экземпляров.

МИР, МИР-1, а за ними вторая и третья модификации были поистине непревзойденным словом техники отечественного и мирового производства. МИР-2, например, успешно соревновалась с универсальными компьютерами обычной структуры, превосходящими ее по номинальному быстродействию и объему памяти во много раз. На этой машине впервые в практике отечественного компьютеростроения был реализован диалоговый режим работы, использующий дисплей со световым пером. Каждая из этих машин была шагом вперед на пути построения разумной машины.

С появлением этой серии устройств в работу был внедрен новый «машинный» язык программирования — «Аналитик». Алфавит для ввода состоял из заглавных русских и латинских букв, алгебраических знаков, знаков выделения целой и дробной части числа, цифры, показателей порядка числа, знаков препинания и так далее. При вводе информации в машину можно было пользоваться стандартными обозначениями элементарных функций. Русские слова, например, «заменить», «разрядность», «вычислить», «если», «то», «таблица» и другие использовались для описания вычислительного алгоритма и обозначения формы выходной информации. Любые десятичные значения можно было вводить в произвольной форме. Все необходимые параметры вывода программировались в период постановки задач. «Аналитик» позволял работать с целыми числами и массивами, редактировать введенные или уже запущенные программы, менять разрядность вычислений путем замены операций.

Символическая аббревиатура МИР была ни чем иным, как аббревиатура основного назначения устройства: «машина для инженерных расчетов». Эти устройства принято считать одними из первых персональных компьютеров.

Технические параметры МИР:

  • двоично-десятичная система счисления;
  • фиксированная и плавающая запятая;
  • произвольная разрядность и длина производимых расчетов (единственное ограничение накладывал объем памяти — 4096 символов);
  • вычислительная мощность: 1000-2000 операций в секунду.

Ввод данных осуществлялся за счет печатающего клавиатурного устройства (электрической машинки Zoemtron), идущего в комплекте. Соединение комплектующих происходило посредством микропрограммного принципа. В последствии благодаря этому принципу удалось усовершенствовать как сам язык программирования, так и прочие параметры устройства.

Следующее поколение компьютеров МИР также имело ряд преимуществ. Например, МИР-1 имел 120-разрядные микрокоманды, которые записывались на сменных микропрограммных матрицах. Это существенно повлияло на характер использования машины, а также на набор арифметических и логических операций, которые она выполняла. МИР-1 имел оперативную память на ферритовом сердечнике, внешнюю память обеспечивали 8-трековые перфоленты. Эти компьютеры нельзя было назвать супермощными, но их вычислительных ресурсов (200-300 операций в секунду) хватало для осуществления типичных инженерных расчетов. Потребляемая энергия не превышала показателя 1,5 кВт. Вес составлял 400 килограмм.

Источник МИР-2 уже производил до 12 000 операций в секунду, а МИР-3 обладал возможностями, в 20 раз превышающими показатели предыдущей модели.

Супермашины серии «Эльбрус»

Выдающийся советский разработчик В.С. Бурцев (1927-2005 гг.) в истории отечественной кибернетики считается главным конструктором первых в СССР суперкомпьютеров и вычислительных комплексов для систем управления реального времени. Он разработал принцип селекции и оцифровки сигнала радиолокации. Это позволило произвести первую в мире автоматическую съемку данных с обзорной радиолокационной станции для наведения истребителей на воздушные цели. Успешно проведенные эксперименты по одновременному сопровождению нескольких целей легли в основу создания систем автонаведения на цель. Такие схемы строились на базе вычислительных устройств «Диана-1» и «Диана-2», разработанных под руководством Бурцева.

Далее группа ученых разработала принципы построения вычислительных средств противоракетной обороны (ПРО), что привело к появлению радиолокационных станций точного наведения. Это был отдельный высокоэффективный вычислительный комплекс, позволяющий с максимальной точностью производить автоматическое наблюдение за сложными, разнесенными на большие расстояния объектами в режиме онлайн. В 1972 году для нужд ввозимых комплексов противовоздушной обороны были созданы первые вычислительные трехпроцессорные машины 5Э261 и 5Э265, построенные по модульному принципу. Каждый модуль (процессор, память, устройство управления внешними связями) был полностью охвачен аппаратным контролем. Это позволило осуществлять автоматическое резервное копирование данных в случае, если происходили сбои или отказ в работе отдельных комплектующих. Вычислительный процесс при этом не прерывался. Производительность данного устройства была для тех времен рекордной — 1 млн операций в секунду при очень малых размерах (менее 2 м 3 ). Эти комплексы в системе С-300 по сей день используются на боевом дежурстве.

В 1969 году была поставлена задача разработать вычислительную систему с производительностью 100 млн операций в секунду. Так появляется проект многопроцессорного вычислительного комплекса «Эльбрус». Разработка машин «запредельных» возможностей имела характерные отличия наряду с разработками универсальных электронно-вычислительных систем. Здесь предъявлялись максимальные требования как к архитектуре и элементной базе, так и к конструкции вычислительной системы. В работе над «Эльбрусом» и рядом предшествующих им разработок ставились вопросы эффективной реализации отказоустойчивости и непрерывного функционирования системы. Поэтому у них появились такие особенности, как многопроцессорность и связанные с ней средства распараллеливания ветвей задачи. В 1970 году началось плановое строительство комплекса. В целом «Эльбрус» считается полностью оригинальной советской разработкой. В него были заложены такие архитектурные и конструкторские решения, благодаря которым производительность МВК практически линейно возрастала при увеличении числа процессоров. В 1980 году «Эльбрус-1» с общей производительностью 15 млн операций в секунду успешно прошел государственные испытания. МВК «Эльбрус-1» стал первой в Советском Союзе ЭВМ, построенной на базе ТТЛ-микросхем. В программном отношении ее главное отличие — ориентация на языки высокого уровня. Для данного типа комплексов были также созданы собственная операционная система, файловая система и система программирования «Эль-76».

«Эльбрус-1» обеспечивала быстродействие от 1,5 до 10 млн операций в секунду, а «Эльбрус-2» — более 100 млн операций в секунду. Вторая ревизия машины (1985 год) представляла собой симметричный многопроцессорный вычислительный комплекс из десяти суперскалярных процессоров на матричных БИС, которые выпускались в Зеленограде. Серийное производство машин такой сложности потребовало срочного развертывания систем автоматизации проектирования компьютеров, и эта задача была успешно решена под руководством Г.Г. Рябова. «Эльбрусы» вообще несли в себе ряд революционных новшеств: суперскалярность процессорной обработки, симметричная многопроцессорная архитектура с общей памятью, реализация защищенного программирования с аппаратными типами данных — все эти возможности появились в отечественных машинах раньше, чем на Западе. Созданием единой операционной системы для многопроцессорных комплексов руководил Б.А. Бабаян, в свое время отвечавший за разработку системного программного обеспечения БЭСМ-6.

Работа над последней машиной семейства, «Эльбрус-3» с быстродействием до 1 млрд. операций в секунду и 16 процессорами, была закончена в 1991 году. Но система оказалась слишком громоздкой (за счет элементной базы). Тем более, что на тот момент появились более экономически выгодные решения строительства рабочих компьютерных станций.

Вместо заключения

Советская промышленность была в полной мере компьютеризирована, но большое количество слабо совместимых между собой проектов и серий привело к некоторым проблемам. Основное «но» касалось аппаратной несовместимости, что мешало созданию универсальных систем программирования: у всех серий были разные разрядности процессоров, наборы команд и даже размеры байтов. Да и массовым серийное производство советских компьютеров вряд ли можно назвать (поставки происходили исключительно в вычислительные центры и на производство). В то же время отрыв американских инженеров увеличивался. Так, в 60-х годах в Калифорнии уже уверенно выделялась Силиконовая долина, где вовсю создавались прогрессивные интегральные микросхемы. В 1968 году была принята государственная директива «Ряд», по которой дальнейшее развитие кибернетики СССР направлялось по пути клонирования компьютеров IBM S/360. Сергей Лебедев, остававшийся на тот момент ведущим инженером-электротехником страны, отзывался о «Ряде» скептически. По его мнению, путь копирования по определению являлся дорогой отстающих. Но другого способа быстро «подтянуть» отрасль никто не видел. Был учреждён Научно-исследовательский центр электронной вычислительной техники в Москве, основной задачей которого стало выполнение программы «Ряд» — разработки унифицированной серии ЭВМ, подобных S/360.

Результат работы центра — появление в 1971 году компьютеров серии ЕС. Несмотря на сходство идеи с IBM S/360, прямого доступа к этим компьютерам советские разработчики не имели, поэтому проектирование отечественных машин начиналось с дизассемблирования программного обеспечения и логического построения архитектуры на основании алгоритмов её работы.

M-1: первый советский компьютер, о котором все забыли

Считается, что первым советским компьютером была МЭСМ — Малая электронная счетная машина, созданная в 1951 году в Киеве под руководством Сергея Лебедева. Но был и еще один «как бы компьютер», который мог бы претендовать на первенство в этой области — М-1. Что это была за машина и чем она была круче МЭСМ?

Машина Лебедева
Меньше, да лучше?
Первые среди отстающих
Машина Лебедева
Меньше, да лучше?
Первые среди отстающих

Машина Лебедева

Сергей Алексеевич Лебедев — один из отцов отечественного компьютеростроения. Под его руководством были созданы 15 различных типов электронно-вычислительных машин — причем не только ламповых, но и аппаратов на интегральных схемах. Ну и конечно же главное достижение легендарного ученого — создание Малой электронной счетной машины (МЭСМ). Во многих источниках ее называют первой советской ЭВМ. Да что там, даже сам Лебедев так ее охарактеризовал в статье «У истоков первой ЭВМ». Хотя как раз тут первенство Лебедева может быть оспорено — но об этом позже.

Работу над созданием МЭСМ Лебедев начал в Киеве в 1947 году, куда попал по приглашению Михаила Лаврентьева, на тот момент директора Института математики Академии Наук Украины и по совместительству — заместителя президента этой самой Академии. К переезду на Украину Сергей Алексеевич склонялся долго и тяжело. К тому времени ученый уже 10 лет руководил одним из отделов во Всесоюзном электротехническом институте, и даже должность директора целого института в столице УССР его не прельщала.

Как позже рассказывал сын ученого, Сергей Лебедев-младший, выбор был сделан при помощи жребия. «Мать предложила бросить жребий. Две бумажки с надписями ‘Киев’ и ‘Москва’ были положены в шапку и тщательно перемешаны. К счастью, выпал Киев! С тех пор эта шапка прочно вошла в семейные фольклорные анналы и стала в кругу друзей не менее знаменитой, чем шапка Мономаха».

В Киеве Сергей Алексеевич стал руководителем Института энергетики. Там Лебедев инициировал создание лаборатории моделирования и вычислительной техники в составе Института электротехники. Немалую роль в этом сыграл Лаврентьев, который написал Сталину письмо с просьбой поддержать работы в области вычислительной техники, учитывая их важность для обороноспособности СССР. Собрав команду талантливых ученых, Лебедев приступил к сборке машины в бывшем здании психиатрической больницы в предместье Феофания.

К концу 1949 года была полностью разработана архитектура МЭСМ, а к осени 1950 года «компьютер» полностью собрали.

1951 год. Молодые кибернетики за пультом МЭСМ. Фото: Информационные технологии в Украине

Пробный пуск машины случился 6 ноября 1950 года, а уже 4 января 1951 года работающая МЭСМ была продемонстрирована приемной комиссии. К концу того же 1951 года работу аппарата оценила комиссия более высокого уровня, из Москвы, во главе с академиком М.В. Келдышем, и 25 декабря рекомендовала ввести машину в эксплуатацию.

5 легендарных компьютеров, которые сделали в СССР. Есть, чем гордиться

Favorite

В закладки

5 легендарных компьютеров, которые сделали в СССР. Есть, чем гордиться

Может, кто-то не знает, но СССР занималась разработкой собственных ЭВМ и персональных компьютеров. За всё это отвечали первоклассные инженеры.

В своё время одна из таких ЭВМ даже удостоилась звания самой мощной вычислительной машины в Европе. А это, знаете ли, очень похвально.

Мы узнали всё про советские компьютеры и о пяти самых интересных моделях рассказываем вам.

1. МЭСМ

Удивительно, что МЭСМ была создана за два года.

Точкой отсчёта в развитии советских ЭВМ принято считать МЭСМ (Малую электронно-счётную машину). Инициатором её разработки в 1948 году выступил наш инженер и изобретатель Сергей Алексеевич Лебедев.

К 1950 году МЭСМ была полностью готова. ЭВМ состояла из 6 тысяч вакуумных ламп-проводников. Электропотребление было на уровне 25 кВт. При этом, счётная машина могла выполнять до 3 тысяч операций в секунду. Тестовый стенд был собран в бывшем общежитии при женском монастыре в Феофании под Киевом.

МЭСМ могла считывать информацию с перфокарт и магнитных лент.

Сергей Лебедев — создатель МЭСМ.

Знаете, кстати, какая площадь была необходима для её монтажа? 60 квадратных метров! Стоит сказать, что по сравнению с другими ЭВМ тех лет, МЭСМ была сравнительно компактной. Как какой-нибудь Mac mini на фоне Mac Pro.

В 1951 году академия наук приняла и утвердила МЭСМ на постоянное использование в военной и промышленной сферах.

2. БЭСМ-1

Сложно поверить, что когда-то ЭВМ, занимавшие огромные пространства, по мощности уступают современным смартфонам.

Из названия, думаю, уже догадались, что БЭСМ — это сокращение от «Большой электронно-счётной машины». Её разработкой также руководил Сергей Алексеевич. Создавалась она совместно со студентами-дипломниками ИТМиВТ (Института точной механики и вычислительной техники).

Выпуск состоялся в 1953 году и по возможностям БЭСМ сравнялась с американскими ЭВМ. На территории Европы БЭСМ была и вовсе признана самой мощной вычислительной станцией. Она могла выполнять до 10 тысяч операций в секунду.

Требуемая площадь — около 100 квадратных метров.

К слову, на БЭСМ-4 (1965 г.) был создан мультфильм «Кошечка», ставший одним из первых примеров компьютерной анимации. Да, за много лет до Pixar.

В 1967 году была выпущена последняя машина в этой линейке — БЭСМ-6 (пятой не было), которая относилась к категории СуперЭВМ. Она выпускалась до 1987 года (всего с заводов сошло около 355 единиц БЭСМ-6), а её наработки стали основой ЭВМ Эльбрус.

Также на БЭСМ-6 учёные и военные проводили расчёты для запуска космических аппаратов и моделировали поведение атомных бомб.

3. Электроника БК–0010

Помните такие?

Помимо промышленных ЭВМ, для которых требовался целый отдельный павильон, выпускались и так называемые бытовые компьютеры. Проще говоря — ПК. Вот, например, «Электроника БК-0010».

В качестве носителей информации компьютер использовал компакт-кассеты. Процессором выступал 16-битный чип К1801ВМ1, тоже производства СССР.

Компьютер появился в 1985 году, его проектированием занимались Александр Полосин и Сергей Косенков. Особенностью компьютера была поддержка графического режима.

Электроника БК-0010 была дико популярна среди гиков. Под неё было создано множество софта, а в начале 90-х были выпущены улучшенные версии «Электроника БК–011» и «Электроника БК–011М».

4. Микро-80

Покупать все комплектующие нужно было по отдельности и паять самостоятельно.

Первый любительский компьютер, который появился за два года до выхода «Электроники». Он был создан радиолюбителями из «МИЭМ» (Московского института электроники и математики) абсолютно случайно. История такая:

В институт по ошибке приходит посылка от НПО «Кристалл», на коробке которой написаны цифры 8080. Подкованные ребята сразу просекли, что внутри лежит аналог чипа Intel 8080. И там действительно лежал советский аналог интеловского процессора с сумасшедшим названием «К580ИК80А».

«Микро-80» не превратился в массовый продукт — это была история для энтузиастов, какими и были его создатели. Ребята из МИЭМ в 1983 году в журнале «Радио» опубликовали схему и инструкцию по его сборке.

Идея того, что любой технически подкованный человек может собрать у себя дома целый компьютер потрясла Советский Союз. «Микро-80» был хитом у радиолюбителей.

С «Радио 86РК» уже мог справиться практически любой.

Естественно, нашлись и те, кому было сложно собрать конструкцию из более чем 200 микросхем. Но компьютер-то хотелось! Поэтому в редакцию журнала частенько стали поступать письма с просьбой сделать упрощённую схему.

В 1986 году это случилось, и создатели «Микро-80» поделились схемой по сборке более простого компьютера «Радио 86РК», содержащий всего 29 микросхем.

5. Агат

Но Агат нельзя назвать полной копией Apple II. Всё-таки железо в нём было своё, хоть созданное по подобию.

Первый серийный компьютер, который производился с 1982 по 1993 год, целых 11 лет — это самое главное, что вам нужно знать про этот компьютер. И в отличие от большинства того, о чём мы говорили с вами до этого, Агат был основан на Apple II+.

Стоил он дорого, 4 тысячи рублей. За эти деньги можно было приобрести машину. Как домашний компьютер, Агат популярности не снискал, зато он прижился в образовательной сфере.

Институты и школы использовали Агаты в компьютерных классах. По некоторым сообщениям, они использовались в некоторых школах аж до 2001 года.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *