Когда была открыта первая внесолнечная планета
Перейти к содержимому

Когда была открыта первая внесолнечная планета

  • автор:

История открытия экзопланет кратко

Анимация хронологии открытия экзопланет. Цвет точки означает метод открытия. Горизонтальная ось — размер большой полуоси. Вертикальная ось — масса. Для сравнения белым цветом обозначены планеты солнечной системы

Экзопланета (внесолнечная планета) — планета, находящаяся вне Солнечной системы.

В 2014 году, уже после открытий многих экзопланет, в архивах был найден спектр Звезды ван Маанена, полученный в 1917 году. Он считается первым наблюдательным свидетельством существования экзопланеты, однако в дальнейшем существование планет у звезды подтверждено не было [4] .

Астрономы понимали, что у более близких звёзд должно быть легче зафиксировать колебания в их движении при наличии планет. Большая скорость движения звезды Барнарда по небу указывала на её близость к Земле, и в итоге, в начале 1960-х годов Питер Ван де Камп объявил об открытии у этой звезды планеты с массой Юпитера. Это открытие было опровергнуто, однако на орбите этой звезды на данный момент есть кандидат в экзопланеты (GJ 699 b), который, если существует, должен иметь массу в 3,2 раза больше, чем у Земли.

Систематический поиск экзопланет методом радиальных скоростей начался в 1980-х годах.

Наконец, первая подтверждённая экзопланета была обнаружена в 1988 и подтверждена в 1992. Она вращается вокруг пульсара PSR 1257+12 [6] , и, хотя до её открытия была обнаружена другая планета, именно она стала первой подтверждённой.

В этой статье представлены первые в своём роде или примечательные открытия экзопланет по годам.

Долгое время обнаружение данных планет в огромном космическом пространстве было практически невозможно. Так как планеты вне Солнечной системы очень маленьких размеров по космическим масштабам и в сравнении со звездами весьма тусклы, а сами же звезды расположены на большом расстоянии от Солнца.

Большинство экзопланет обнаружено благодаря различным непрямым методикам детектирования, а не визуальному наблюдению. В результате большая часть открытых планет вне Солнечной системы представляют собой газовых гигантов, более похожих на Юпитер, чем на нашу с вами Землю. Это вполне очевидно и объясняется весьма ограниченными на данный момент методами исследования, в большинстве случаев делающих возможным обнаружение лишь массивных планет с коротким периодом колебания.

Надежные кандидаты

Прямое изображение экзопланет у звезды HR 8799

Прямое изображение экзопланет у звезды HR 8799

Прогресс не стоит на месте, и в настоящее время уже открыто множество планет с массой как у Нептуна и даже меньше. Из 2326 обнаруженных телескопом Кеплер объектов, 207 обладают размером примерно как у Земли, 680 имеют размер СуперЗемли, 1181 — размер Нептуна, 203 — размер, близкий к юпитерианскому, и 55 — больший, чем даже у Юпитера.

История открытия первых экзопланет

Экзопланета Kepler 78b в представлении художника

Экзопланета Kepler 78b в представлении художника

Первая внесолнечная планета была обнаружена в 1988 году канадскими астрономами С. Янгом, Б. Кэмпбеллом и Г. Уолкером у субгиганта оранжевого цвета Гамма Цефея A, но подтверждена она была только в 2002 году. Поэтому официально первыми открытыми (и своевременно подтвержденными) экзопланетами, считаются планеты, обнаруженные астрономом Александром Вольшчаном у нейтронной звезды PSR 1257+12 в 1991 году.

Происхождение названий экзопланет

Как была открыта планета Kepler 78b

Экзопланета – это вне солнечная планета вращающаяся вокруг своей звезды. С момента первого обнаружения их в конце 1980-х г. таких планет на сегодня было обнаружено более 4000, но многие из них являются не подтвержденными. Согласно официальным данным на 21 марта 2016 года было достоверно подтверждено присутствие в 1341 солнечных системах 2097 различных планет данного типа.

Вступление

Долгое время было затруднительно обнаружить такие планеты, т.к. они слишком малы и невидны на таком огромном межзвездном расстоянии. К примеру, до ближайшей звезды нужно лететь четыре с половиной года со скоростью света. Все такие планеты были обнаружены только в Млечном пути на различных расстояниях. Самая ближайшая из них является Альфа Центавра B b, примерное удаление от нас 4,36 световых года. Большинство обнаруженных экзопланет похожи на газовые гиганты Юпитер и Нептун.

История открытия экзопланет

В 1989 году сверхмассивная планета (или коричневый карлик) была найдена Д. Латамом около звезды HD 114762 A. Однако её планетный статус был подтверждён только в 1999 году.

Авторское представление о транзите планеты GJ 1214b перед своей звездой

Первые потонциальные к жизни планеты — Драугр и Полтергейст — были обнаружены у нейтронной звезды Лич (PSR 1257+12), их открыл астроном Александр Вольшчан в 1991 году. Эти планеты были признаны вторичными, возникшими уже после взрыва сверхновой.

В дальнейшем путём измерения лучевой скорости звёзд и поиска их периодического доплеровского изменения (метод Доплера) было обнаружено несколько сотен экзопланет.

В августе 2004 года в системе звезды Сервантес (μ Жертвенника) была обнаружена первая планета — горячий нептун Кихот. Она обращается вокруг светила за 9,55 суток, на расстоянии 0,09 а. е., температура на поверхности ~ 900 K (+626 °C), масса ~ 14 масс Земли.

Первая сверхземля, обращающаяся вокруг нормальной звезды (а не пульсара), была обнаружена в 2005 году около звезды Глизе 876. Её масса — 7,5 масс Земли.

В 2004 году было получено первое изображение (в инфракрасных лучах) кандидата в экзопланеты у коричневого карлика 2M1207.

13 ноября 2008 года впервые удалось получить изображение сразу целой планетной системы — снимок трёх планет, обращающихся вокруг звезды HR 8799 в созвездии Пегаса. Это первая планетная система, открытая у горячей белой звезды раннего спектрального класса (А5). Все открытые ранее планетные системы (за исключением планет у пульсаров) были обнаружены вокруг звёзд более поздних классов (F-M).

13 ноября 2008 года также впервые удалось обнаружить планету Дагон вокруг звезды Фомальгаут путём прямых наблюдений.

5 декабря 2011 года телескопом Кеплер была обнаружена первая сверхземля в обитаемой зоне — Kepler-22 b.

20 декабря 2011 года телескопом Кеплер у звезды Кеплер-20 были обнаружены первые экзопланеты размером с Землю и меньше — Kepler-20 e (радиусом 0,87 земного и массой от 0,39 до 1,67 масс Земли) и Kepler-20 f (0,045 массы Юпитера и 1,03 радиуса Земли).

22 февраля 2012 года учёные из Гарвард-Смитсоновского центра астрофизики на расстоянии 40 световых лет от Земли открыли первую суперземлю, предположительно являющуюся планетой-океаном — GJ 1214 b. Последние данные транзитных проходов позволяют судить о наличии у GJ 1214 b протяжённой водородно-гелиевой атмосферы, низком уровне метана и слое облаков на уровне давления 0,5 бар, что не соответствует свойствам атмосферы с устойчивым доминированием водяных паров. Период обращения планеты вокруг звезды — красного карлика — 38 часов, расстояние составляет около 2 миллионов километров. Температура на поверхности планеты составляет примерно 230 °C. В 2015 году была обнаружена новая планета, похожая на молодой Юпитер.

Современные методы обнаружения экзопланет в других звездных системах

1. Метод Доплера — спектрометрический, стал самым распространенным методом для обнаружения потенциальных экзопланет оп массе в несколько масс Земли находящихся радом от звезды и планеты газовые-гиганты, с периодом обращения до 10 лет. Метод заключается в вычислении радиальной скорости звезды. Планета, когда вращается вокруг своей звезды, как бы раскачивает ее, смещая ее спектр (Доплеровское смещение спектра звезды). Данным методом удалось обнаружить на 2011 год 647 планет.

Метод Доплера экзопланеты

2. Метод транзитного прохождения — этот метод заключается в наблюдении за изменением яркости звезды в момент прохождения на ее фоне планеты. Данный метод требует долгого наблюдения за звездой и если транзит был зафиксирован, то требуется неоднократное его подтверждение. Плюсом такого метода является определение размеров планеты, состав и наличие атмосферы (с применением спектрографа). Минусом данного метода является возможность увидеть планету только если она находится в одной плоскости при наблюдении. На 2011 год было обнаружено 185 потенциальных планет.

Метод транзитного прохождения

3. Метод гравитационного микролинзирования. При вычислении подобных объектов требуется, что бы между предполагаемой планетой и наблюдателем на Земле находилась другая звезда (играющая роль линзы). В том случае, если у звезды-линзы есть спутники планеты, то наблюдается асимметричная кривая блеска. Этот метод применяется крайне редко, но при его помощи можно вычислить планеты с Земной массой.
На 2011 год данным методом вычислили 13 планет.

Метод гравитационного микролинзирования

4. Астрометрический метод предполагает изменение пространственного движения звезды под воздействием гравитационного потенциала планеты. В основном этим методом производится уточнение массы и размер ранее обнаруженной экзопланеты, в частности были уточнены размеры Эпсилона Эридана b.

Астрометрический метод

5. Радионаблюдение пульсаров. Крайне сложный метод обнаружения планет Земной группы, он заключается в измерении направленных пучков энергии излучаемых от пульсара. Если вокруг пульсара вращается некая планета, то излучаемый сигнал, имеет особенный осциллирующий характер. На 2010 год обнаружили 5 планет у двух пульсаров.

Типы экзопланет обнаруженных астрономами

Горячий Юпитер

Благодаря огромным размерам, такие газовые гиганты проще обнаружить у далеких звезд современными методами.

Пульсарная планета

Первую планету, вращающуюся вокруг пульсара PRS B1257+12, обнаружили в 1994 году с помощью радиотелескопа с расстояния в 800 световых лет от Земли. Пульсар это не простая звезда, а быстровращающийся стробоскоп, образовавшийся после взрыва сверхновой. Предполагается, что зарождение жизни на таких планетах крайне мала т.к. экзопланеты находятся в зоне крайне высоких энергий излучаемых пульсаром.

Суперземля

Данные типы планет имею массу до 10 масс Земли. Первой такой обнаруженной планетой, стала пара планет возле звезды PSR B1257+12.

Предполагается, что планета Суперземля имеет чрезвычайно тектоническую активность. Астрономы из Гарвард-Смитсонсково университета разрабатывают теорию, что на таких планетах тонкие тектонические плиты.

Эксцентрические планеты.

Солнечная система довольно четко сбалансирована. Планеты в ней вращаются по ровным орбитам. Обнаруженные эксцентрические странные планеты не вращаются по ровному кругу вокруг звезды. Их орбита то приближается к звезде, то удаляется.

Горячие Нептуны

Планета Океан

Такие планеты могут быть двух типов. Планета с жидкой водой покрытая полностью или почти полностью.

Хтоническая планета

Такие планеты очень близко расположены к своим звездам, покрыты они раскаленным камнем и лавой. На их поверхностях происходит настоящий Ад. К примеру, обнаруженная планета Corot-7b ближе на 23 раза к звезде, чем наш Меркурий.

Планета-сирота

В основном планеты привязаны гравитацией к звездам, но есть теория, что под действием неких процессов или столкновений, планета может оторваться от своей звезды, и пустится в свободное плавание.

Настоящим кладом для астрономов стал поиск обитаемых планет. Благодаря современной аппаратуре, ученые обнаружили ряд звездных систем с планетами похожими на Солнечную систему. К примеру звезда 55 Рака имеет 5 подтвержденных экзопланет, а удалена от нас на расстояние всего в 41 световой год.

Какие инструменты применяются для обнаружения подобных планет

Кеплер – космический телескоп, диаметр зеркала 0,95 м. Задача одновременно отслеживать 100 звезд;

кеплер телескоп

COROT – специализированный космический телескоп с зеркалом 0,3 м. Задача следить за отблесками звезд Метод Доплера;

COROT телескоп

Gaia – космическая обсерватория. Введена в эксплуатацию в 2013 году для построения 3-х мерной карты галактики Млечный путь, предполагается работа по поиску обитаемых планет;

Экзопланетами называют миры, расположенные вне нашей Солнечной системы. За последние 20 лет были найдены тысячи чужих планет при помощи мощного космического телескопа Кеплер НАСА. Все они отличаются по размерам и орбитам. Некоторые – гиганты, вращающиеся очень близко, а другие – ледяные или же скалистые. Но космические агентства сосредоточены на конкретном виде. Они ищут экзопланеты размера Земли и с расположением в зоне обитаемости.

Экзопланеты

В августе 2016 года ученые заявили, что нашли подходящий кандидат в экзопланеты земного типа возле звезды Проксима Центавра. Новый мир назвали Проксима b. Он превосходит Землю по массивности в 1.3 раза (скалистый). Отдален от звезды на 7.5 миллионов км, а на орбиту тратит 11.2 дней. Это значит, что планета заблокирована – всегда повернута к звезде одной стороной (как в случае с земным спутником).

Ранние открытия

Хотя официально наличие экзопланет не подтверждали до 1990-х годов, астрономы знали, что они там есть. И это не строилось на фантазиях и сильном желании. Достаточно было посмотреть на медлительность вращения нашей звезды и планет.

Ученые владели главным механизмом – история появления Солнечной системы. Они знали, что существовало газовое и пылевое облако, не выдержавшее давления собственной гравитации и рухнувшее в себя. В момент крушения появилось Солнце и планеты. Сохранение углового момента обеспечило ускорение для будущей звезды. Солнце вмещает 99.8% массы всей системы, а у планет – 96% момента движения. Поэтому исследователи не уставали удивляться медлительности нашей звезды.

Наиболее юная экзопланета достигает возраста меньше миллиона лет и вращается вокруг звезды Coku Tau 4, удаленной на 420 световых лет. Ученым удается заметить ее из-за большого пробела, присутствующего в звездном диске. Она в 10 раз крупнее земной орбиты и скорее всего создается во время вращения планеты, очищающей пространство диска от пыли.

Наиболее юная экзопланета достигает возраста меньше миллиона лет и вращается вокруг звезды Coku Tau 4, удаленной на 420 световых лет. Ученым удается заметить ее из-за большого пробела, присутствующего в звездном диске. Она в 10 раз крупнее земной орбиты и скорее всего создается во время вращения планеты, очищающей пространство диска от пыли.

Они начали искать исключительно звезды, напоминающие нашу. Но ранние находки в 1992 году неожиданно привели к пульсару (мертвая звезда с быстрой скоростью вращения после взрыва сверхновой) – PSR 1257+12. В 1995 году обнаружился первый мир – 51 Пегаса b. По размеру напоминал Юпитер, но располагался ближе к своей звезде. Это было удивительное и шокирующее открытие. Но прошло 7 лет, и мы нашли новую планету, намекающую на то, что Вселенная богата на миры.

В 1998 году команда из Канады заметила мир образца Юпитер возле Гамма Цефея. Но ее орбитальный путь был намного меньше, чем у Юпитера, и ученые не претендовали на исследование находки.

Бум на данные

Количество экзопланет, открытых разными способами

Типы экзопланет

Это газовые гиганты, напоминающие массу Юпитера, но совершающие обороты слишком близко к звезде-хозяину. Из-за этого происходит резкий скачок температуры (7000°C). Для ученых было настоящим сюрпризом обнаружить, что этот вид довольно распространен, так как ранее полагали, что такие планеты должны вращаться во внешней линии.

Такие объекты совершают орбитальные проходы вокруг нейтронных звезд – остаточные ядра крупных звезд, то есть, все, что сохранилось после взрыва сверхновой. Нет сомнений, что ни одна планета не переживет такое событие, поэтому они формируются уже после.

Экзоземля

Эти объекты по параметрам и химическому составу напоминают нашу и вращаются в зоне обитания (идеальная дистанция к звезде, позволяющая сохранять воду в жидком состоянии). Они ценны для обнаружения, так как могут располагать жизнью.

В нашей Солнечной системе, планеты по большей части имеют довольно равномерные круговые орбиты. Однако, экзопланеты, найденные до сих пор, могут иметь гораздо более эксцентричные орбиты, двигаясь то близко, то в отдаление от звезды. Если идеальный круг имеет значение эксцентриситета равное ноль, то примерно половина экзопланет имеет эксцентриситет 0,25 или более.

Эти эксцентричные орбиты могут привести к довольно экстремальным тепловым волнам. Например, HD 80606b, которая примерно в четыре раза больше Юпитера и находится на расстоянии примерно в 200 световых лет от Земли, имеет эксцентриситет примерно 0,93. Таким образом, орбитальное расстояние HD 80606b меняется в промежутках от орбитального расстояния Земли до орбитального расстояния Меркурия.

К газовым относят те, что напоминают Юпитер и Сатурн. Из элементов присутствуют водород и гелий, окружающие скалистое или металлическое ядро. У ледяных, вроде Нептуна и Урана, намного меньше этих элементов, зато заметны более тяжелые. К этим типам относятся примерно 2/3 найденных экзопланет.

Эти объекты полностью укрыты водным слоем. Скорее всего, с самого начала это были ледяные миры, появившиеся на большой удаленности от звезды. Но что-то заставило их приблизиться. Температура поднялась и лед трансформировался воду.

Изначально были газовыми гигантами, которым не повезло подойти слишком близко к звезде. Из-за этого атмосферы выгорела, оставив лишь металлическое или скалистое ядро. На поверхности может течь лава. Суперземли и хтонические планеты похожи, поэтому их иногда путают.

ooextrasolar_99

Земные приборы активно работают над поиском. У нас есть MOST и TESS НАСА, CHEOPS (Швейцария) и спектрограф HARPS. Не стоит забывать о телескопе Спитцер. Он идеален тем, что настроен на инфракрасный диапазон и способен вычислять экзопланеты по температуре и даже характеризовать атмосферные показатели. Ниже представлен список экзопланет, пригодных для жизни.

Диаграмма с относительными размерами экзопланет, найденных Кеплером. Сравнивается с Марсом и Землей

Диаграмма с относительными размерами экзопланет, найденных Кеплером. Сравнивается с Марсом и Землей

Известные экзопланеты

Мы располагаем двумя тысячами планет за пределами Солнечной системы, поэтому сложно выбрать несколько примеров. Конечно, выделяются небольшие и расположенные в зоне обитания. Но стоит вспомнить еще 5 объектов, способствующих нашему пониманию эволюционного планетарного пути.

— 51 Пегаса b – первая найденная планета, обладающая половиной массы Юпитера. Ее орбитальный путь приравнивается к маршруту Меркурия. Удаленность от звезды мала, поэтому находится в заблокированном состоянии (одна сторона всегда повернута к звезде).

— 55 Рака e – суперземля возле звезды, чья яркость позволяет наблюдать ее невооруженным глазом. Это очень хорошо, так как дает ученым возможность исследовать детали чужой системы. На один орбитальный проход уходит 17 часов и 41 минута. Объект может обладать алмазным ядром и большим количеством углерода.

— WASP-33b – интересная планета с заметной защитной оболочкой. Речь идет о стратосфере, впитывающей видимое и ультрафиолетовое свечение звезды. Ее нашли в 2011 году. Орбитальное движение противоположно звездному, что создает ощутимые вибрации.

— HD 209458 b – первая, которую удалось найти при помощи звездного транзита в 1999 году. Она также стала первой, у которой выявили атмосферную характеристику вместе с температурными показателями и отсутствием облачных формирований.

— HD 80606 b – считалась самой необычной планетой из-за странностей в орбите (будто проход кометы Галлея вокруг нашей звезды). Скорее всего, на это влияет еще одна звезда. Нашли в 2001 году. Изучите список экзопланет земного типа с указанием звезды-хозяина и расстояния от Солнца.

Список ближайших экзопланет земного типа

Имя Изображение Жизнепригодность Звезда Расстояние от Солнца
Альфа Центавра B b 1 Предполагаемая температура поверхности: 1200 °C Альфа Центавра B 4,37
Gliese 876 d 2 Предполагаемая температура поверхности: 157-377°C Gliese 876 15
Gliese 581 e 3 Из-за слишком высокой температуры скорее всего не имеет атмосферы Gliese 581 20
Gliese 581 c 4 Сомнительна. Скорей всего находится вне обитаемой зоны Gliese 581 20
Gliese 581 d 5 Возможная психропланета. Находится внутри обитаемой зоны Gliese 581 20
Глизе 667 Cc 6 Возможная мезопланета Gliese 667C 22
61 Девы b 7 Слишком высокая температура из-за близости к звезде 61 Девы 28
HD 85512 b 8 Возможная Термопланета. Считалась наиболее жизнепригодной экзопланетой до открытия Глизе 667 Cc. HD 85512 36
55 Cancri e 9 Слишком высокая температура из-за близости к звезде 55 Cancri 40
HD 40307 b 10 Слишком высокая температура из-за близости к звезде HD 40307 42
HD 40307 c 11 Слишком высокая температура из-за близости к звезде HD 40307 42
HD 40307 d 12 Слишком высокая температура из-за близости к звезде HD 40307 42

Посмотрите увлекательные видео про экзопланеты, чтобы исследовать их строение, внутренний состав, классификацию, особенности атмосферы и расположение в зоне обитаемости.

Как искать экзопланеты?

Как удается найти мир, по размеру напоминающий нашу планету, если он скрывается за десятками световых лет? И насколько сложно отыскать экзопланету земного типа с потенциалом для жизни? Вся грандиозность поставленной проблемы становится понятнее, если вспомнить, что крупные звезды кажутся всего лишь небольшими яркими точками. Некоторые даже в мощные телескопы не удается разглядеть.

Планеты достигают лишь небольшой части от звездной массы. Из-за этого ядерный синтез не активируется. В таком случае миры очень крошечные и темные, что еще больше усложняет работу исследователей. Приплюсуйте к этому и тот момент, что планеты обнаруживаются рядом с яркими звездами, часто закрывающие их своим свечением.

Но для ученых нет ничего невозможного и они всегда находят обходные пути. Если планету нельзя увидеть в прямое наблюдение, то остаются приметные звезды, которые влияют на орбитальный путь планеты. В начале 20-го века астрономы выявили конкретные критерии поиска, но только в последнее время телескопы достигли нужной чувствительности, чтобы применить их на практике и не ошибаться. Какие же есть методы? Перечислим их:

Художественная интерпретация планеты, совершающей орбитальный проход вокруг звезды за пределами нашей системы. Это 51 Пегас b – газовый гигант, чей орбитальный путь занимает 4 дня

Художественная интерпретация планеты, совершающей орбитальный проход вокруг звезды за пределами нашей системы. Это 51 Пегас b – газовый гигант, чей орбитальный путь занимает 4 дня

С развитием техники ученым удается открывать все больше экзопланет, чье количество начинает исчисляться уже тысячами. Именно поэтому важно уметь группировать объекты, чтобы разбираться в характеристиках. Но у нас до сих пор мало информации о далеких планетах, поэтому само определение остается неточным.

Что собою представляет планета?

Давайте разберемся в том, что такое планета. В 2006 году вышел документ Международного астрономического союза (МАС), в котором говорилось, что объект для планетарного статуса должен соответствовать нескольким критериям:

  • совершает обороты вокруг Солнца;
  • обладает необходимой массой, чтобы закрепить круглую форму;
  • устранил мусор и чужеродные объекты с орбиты;

Эти условия появились только после того, как Майк Браун обратил внимание на несколько миров на окраине Солнечной системы. По размеру они напоминали Плутон. Пришлось пересмотреть определение и Плутон автоматически перенесли в категорию карликовых планет.

Плутон и Харон

Но в МАС отказались что-то менять и сказали, что карликовые планеты представляют такой же научный интерес. Они также упомянули такие крупные тела, как Харон и Тритон, на которых заметно много интересных особенностей.

Но он также выявил широкое разнообразие планет. Например, были распространены горячие юпитеры. Некоторые были невероятно древние. Достаточно вспомнить PSR 1620-26 b, которая уступает по возрасту Вселенной всего на миллиард лет. Есть те, кому не повезло проживать чересчур близко к звезде, и их атмосфера напоминает ад на Венере. Были найдены экземпляры, которым удается совершать обороты вокруг двух или даже трех звезд сразу.

Макет телескопа Джеймса Уэбба в натуральную величину

Макет телескопа Джеймса Уэбба в натуральную величину

Конечно, становится понятно, что при таком планетарном разнообразии очень сложно следовать единой системе классификации. Прежде всего исследователи учитывают предрасположенность к наличию жизни. Такие числятся в списке обитаемых экзопланет.

Вот только для этого нужно знать два параметра: массу и орбиту. К сожалению, современная техника все еще не обладает необходимой мощностью, чтобы изучать чужие атмосферы, если только объект не расположен близко и недостаточно крупный. Но все может измениться с появлением в 2018 году телескопа Джеймс Уэбб.

Классификация

  • D – планетоид или спутник, лишенный атмосферы.
  • H – непригодная для жизни.
  • J – газовый гигант.
  • К – есть жизнь или используются купольные камеры.
  • L – есть растительность, но нет животных.
  • M – наземная.
  • N – серная.
  • R – изгой.
  • T – газовый гигант.
  • Y – токсичная атмосфера и высокий температурный показатель.

Если взять научные схемы, то для распределения используют массу или разнообразие элементов. Массу получают на основе наблюдений в телескоп. Ее вычисляют по лучевой скорости, улавливаемой спектрографами. В таком случае, классификация выглядит так:

Читайте также:

  • Спасение жизни это кратко
  • Расскажите о правописании не с причастиями кратко
  • Физические свойства алкадиенов кратко
  • Отношения россии с индией в 21 веке кратко
  • Акустические свойства строительных материалов кратко

ЭКЗОПЛАНЕТА

ЭКЗОПЛАНЕТА, планета, находящаяся за пределами Солнечной системы (греческая приставка «экзо» означает «вне», «снаружи»); альтернативный термин – внесолнечная планета (extra solar planet). Впервые такие планеты были обнаружены косвенно в 1990-х годах по слабому «покачиванию» звезд, вокруг которых они обращаются. К середине 2001 планетные системы были открыты у 58 близких к Солнцу звезд и двух радиопульсаров, причем в некоторых случаях обнаружены системы из нескольких планет, однако до сих пор ни одну из них не удалось непосредственно наблюдать и исследовать. Точное измерение движений звезды позволяет оценить массы наиболее крупных членов ее планетной системы и параметры их орбит. Не исключено, что некоторые экзопланеты не входят в околозвездные системы, подобные Солнечной системе, а движутся в межзвездном пространстве сами по себе.

Также по теме:
АСТРОНОМИЯ И АСТРОФИЗИКА

Поскольку наиболее легко обнаруживаются самые массивные экзопланеты, сильно раскачивающие звезду, вокруг которой они обращаются, большинство из открытых до сих пор экзопланет оказались массивнее Юпитера. Некоторые по массе близки к Сатурну, а в отдельных случаях – к Земле. Поскольку почти одновременно с открытием экзопланет астрономы обнаружили звездообразные объекты сверхмалой массы – коричневые карлики, – возникла необходимость провести четкую границу между звездами и планетами. Сейчас считается общепринятым, что планета – это объект, в котором за всю его историю реакции ядерного синтеза не происходят ни в каком виде. Как показывают расчеты, при формировании космических объектов нормального (солнечного) химического состава с массой более 13 масс Юпитера (Мю) в конце этапа их гравитационного сжатия температура в центре достигает нескольких миллионов кельвинов, что приводит к развитию термоядерной реакции с участием дейтерия – тяжелого изотопа водорода, наиболее легко вступающего в реакцию ядерного синтеза. При меньших массах объектов ядерные реакции в них не происходят. Поэтому массу в 13 Мю считают максимальной массой планеты; объекты с массами от 13 до 70 Мю называют «коричневыми карликами», а еще более массивные – «звездами».

Методы поиска экзопланет.

Планеты – холодные тела; сами они не излучают свет, а лишь отражают лучи своего солнца. Поэтому планету, расположенную вдали от звезды, практически невозможно обнаружить. Если же она движется вблизи звезды и хорошо освещена ее лучами, то для удаленного наблюдателя такая планета неразличима из-за гораздо более яркого блеска самой звезды.

Прямое наблюдение экзопланет.

Также по теме:
ЭКЗОПЛАНЕТА

Предположим, что наблюдатель находится у ближайшей к нам звезды Альфа Кентавра и смотрит в сторону Солнечной системы. Тогда наше Солнце будет сиять для него так же ярко, как звезда Вега на земном небосводе. А блеск планет окажется очень слабым: Юпитер будет «звездочкой» 23 звездной величины, Венера – 24 величины, а Земля и Сатурн – 25 величины. Вообще говоря, крупнейшие современные телескопы могли бы заметить такие слабые объекты, если бы на небе рядом с ними не было ярких звезд. Но для далекого наблюдателя Солнце всегда расположено рядом с планетами: для астронома с Альфы Кентавра угловое расстояние Юпитера от Солнца не превосходит 4 угловых секунд, а между Венерой и Солнцем всего 0,5 угл. сек. Для современных телескопов заметить предельно слабое светило так близко от яркой звезды – задача непосильная. Астрономы сейчас проектируют приборы, которые смогут решить эту задачу. Например, изображение яркой звезды можно закрыть специальным экраном, чтобы ее свет не мешал изучать находящуюся рядом планету. Такой прибор называют «звездным коронографом»; по конструкции он похож на солнечный внезатменный коронограф Лио. Другой метод предполагает «гашение» света звезды за счет эффекта интерференции ее световых лучей, собранных двумя или несколькими расположенными рядом телескопами – так называемым «звездным интерферометром». Поскольку звезда и расположенная рядом с ней планета наблюдаются в чуть разных направлениях, с помощью звездного интерферометра (изменяя расстояние между телескопами или правильно выбирая момент наблюдения) можно добиться почти полного гашения света звезды и, одновременно, усиления света планеты. Оба описанных прибора – коронограф и интерферометр – очень чувствительны к влиянию земной атмосферы, поэтому для успешной работы их, по-видимому, придется доставить на околоземную орбиту.

Измерение яркости звезды.

Существуют косвенные методы обнаружения экзопланет, основанные на наблюдении звезды, на фоне которой перемещается экзопланета. Например, если Земля лежит в плоскости орбиты экзопланеты, то время от времени экзопланета должна затмевать свою звезду. Если это звезда типа нашего Солнца, а экзопланета – типа нашего Юпитера, диаметр которого в 10 раз меньше солнечного, то в результате такого затмения яркость звезды понизится на 1%. Это можно заметить с помощью телескопа. Главная трудность в том, что доля таких экзопланет, точно ориентированных своей орбитальной плоскостью на Землю, должна быть невелика. К тому же затмение длится несколько часов, а интервал между затмениями – годы. Тем не менее уже имеются предварительные сообщения, что такие затмения наблюдались.

Также по теме:
СОЛНЕЧНАЯ СИСТЕМА

Существует также весьма экзотический метод поиска одиночных планет, не обращающихся вокруг звезды, а свободно «дрейфующих» в межзвездном пространстве. Такое тело можно обнаружить по эффекту «гравитационной линзы», возникающему в тот момент, когда невидимая планета проходит на фоне далекой звезды. Своим гравитационным полем планета искажает ход световых лучей, идущих от звезды к Земле; подобно обычной линзе, она концентрирует свет и увеличивает яркость звезды для земного наблюдателя. Это очень трудоемкий методов описка экзопланет, требующий длительного наблюдения за яркостью тысяч и даже миллионов звезд. Но автоматизация астрономических наблюдений уже позволяет его использовать.

Измерение положения звезды.

Более перспективными считаются методы, в которых измеряется движение звезды, вызванное обращением вокруг нее планеты. В качестве примера вновь рассмотрим Солнечную систему. Сильнее всех на Солнце влияет массивный Юпитер, в первом приближении можно рассматривать двойную систему Солнце – Юпитер. Они разделены расстоянием 5,2 а.е. и обращаются с периодом около 12 лет вокруг общего центра масс. Поскольку Солнце примерно в 1000 массивнее Юпитера, оно во столько же раз ближе к центру масс. Значит, Солнце с периодом около 12 лет обращается по окружности радиусом 5,2 а.е./1000 = 0,0052 а.е. (это чуть больше радиуса самого Солнца). С расстояния Альфы Кентавра (4,34 св. года = 275 000 а.е.) радиус этой окружности виден под углом 0,004 угл. сек. Это очень маленький угол: под таким углом нам видится толщина карандаша с расстояния в 360 км. Но астрономы умеют измерять столь малые углы и поэтому уже несколько десятилетий ведут наблюдение за ближайшими звездами в надежде заметить их периодическое «покачивание», вызванное присутствием планет. Пока результаты неоднозначные.

Измерение скорости звезды.

Заметить периодические колебания звезды можно не только по изменению ее видимого положения на небе, но и по изменению расстояния до нее. Вновь рассмотрим систему Юпитер – Солнце, имеющую отношение масс 1:1000. Поскольку Юпитер движется по орбите со скоростью 13 км/с, скорость движения Солнца по его собственной небольшой орбите вокруг центра масс этой системы составляет V = 13 м/с. Для постороннего наблюдателя, расположенного в плоскости орбиты Юпитера, Солнце с периодом около 12 лет то приближается с такой скоростью, то удаляется. Если луч зрения наблюдателя и перпендикуляр к орбитальной плоскости планеты составляют угол i, то наблюдаемая амплитуда скорости будет меньше (V sin i). Можно ли заметить перемещение звезды с такой скоростью? Обычно для измерения скоростей звезд астрономы используют эффект Доплера. Он проявляется в том, что в спектре звезды, движущейся относительно земного наблюдателя, изменяются длины волны всех линий: если звезда приближается к Земле, линии смещаются к синему концу спектра, а если удаляется – к красному. До конца 1980-х годов точность измерения скорости оптической звезды этим методом была не более 500 м/с. Но затем были разработаны принципиально новые спектральные приборы, позволившие повысить точность до 10 м/с. Тогда и стало возможным открытие экзопланет, определение их орбитальных параметров и масс (с точностью до фактора sin i, поскольку наклон орбитальной плоскости экзопланеты в большинстве случаев найти невозможно).

По-существу, этот же метод используют и радиоастрономы, с высокой точностью фиксирующие моменты прихода импульсов от радиопульсаров и тем самым определяющие периодические смещения нейтронной звезды относительно Солнца. Это позволяет обнаруживать невидимые объекты, обращающиеся вокруг радиопульсаров.

История открытия экзопланет.

Астрометрический поиск.

Первые попытки обнаружить экзопланеты связаны с наблюдениями за положением близких звезд. В 1916 американский астроном Эдуард Барнард (1857–1923) обнаружил, что слабенькая красная звездочка в созвездии Змееносца быстро перемещается по небу относительно других звезд – на 10 угл. секунд в год. Астрономы назвали ее Летящей звездой Барнарда. Хотя все звезды хаотически перемещаются в пространстве со скоростями 20–50 км/с, при наблюдении с большого расстояния эти перемещения остаются практически незаметными. Звезда Барнарда – весьма заурядное светило, поэтому возникло подозрение, что причиной ее наблюдаемого «полета» служит не особенно большая скорость, а просто необычная близость к нам. Действительно, звезда Барнарда оказалась на втором месте от Солнца после системы Альфа Кентавра.

Масса звезды Барнарда почти в 7 раз меньше массы Солнца, поэтому влияние на нее соседей-планет (если они есть) должно быть весьма заметным. Более полувека, начиная с 1938, изучал движение этой звезды американский астроном Питер ван де Камп (1901–1995). Он измерил ее положение на тысячах фотопластинок и заявил, что у звезды обнаруживается волнообразная траектория с амплитудой покачиваний около 0,02 угл. сек., следовательно вокруг нее обращается невидимый спутник. Из расчетов П. ван де Кампа следовало, что масса спутника чуть больше массы Юпитера, а радиус его орбиты 4,4 а.е. В начале 1960-х годов это сообщение облетело весь мир. Но не все астрономы согласились с выводами П. ван де Кампа. Продолжая наблюдения и увеличивая точность измерений, Дж.Гейтвуд (G.Gatewood) и его коллеги к 1973 выяснили, что звезда Барнарда движется ровно, без колебаний, а значит массивных планет в качестве спутников не имеет. Однако эти же работы принесли и новую находку: были замечены зигзаги в движении пятой от Солнца звезды Лаланд-21185. Сейчас получены веские доводы, что вокруг этой звезды обращаются две планеты: одна с периодом 30 лет (масса 1,6 Мю, радиус орбиты 10 а.е.) и вторая с периодом 6 лет (0,9 Мю, 2,5 а.е.). Для подтверждения этого открытия ведутся наблюдения.

Планеты у нейтронных звезд.

В конце 1980-х годов несколько групп астрономов в разных странах создали высокоточные оптические спектрометры и начали систематические измерения скоростей ближайших к Солнцу звезд. Эта работа специально была нацелена на поиск экзопланет и через несколько лет действительно увенчалась успехом. Но первыми открыли экзопланету радиоастрономы, причем не одну, а сразу целую планетную систему. Произошло это в ходе исследования радиопульсаров – быстро вращающихся нейтронных звезд, излучающих строго периодические радиоимпульсы. Поскольку пульсары – чрезвычайно стабильные источники, радиоастрономы могут выявлять их движение со скоростью порядка 1 см/с, а значит, обнаруживать рядом с ними планеты с массами в сотни раз меньше, чем у Юпитера.

Первое сообщение в журнале «Nature» об открытии планетной системы вокруг пульсара PSR1829-10 (обозначался также PSR1828-11 и PSR B1828-10, современное обозначение PSR J1830-10) сделала в середине 1991 группа радиоастрономов Манчестерского университета (М.Бэйлес, А.Лин и С.Шемар), наблюдающих на радиотелескопе в Джодрелл-Бэнк. Они объявили, что вокруг нейтронной звезды, удаленной от Солнца на 3,6 кпк, обращается планета в 10 раз массивнее Земли по круговой орбите с периодом 6 месяцев. В 1994 в неопубликованном сообщении авторы уточнили, что планет три: с массами 3, 12 и 8 земных и периодами, соответственно, 8, 16 и 33 месяца. Однако до сих пор это открытие не подтверждено независимыми исследованиями и поэтому остается сомнительным.

Первое подтвердившееся открытие внесолнечной планеты сделал польский радиоастроном Алекс Вольцжан (A.Wolszczan), который с помощью 305-метровой антенны в Аресибо изучал радиопульсар PSR 1257+12, удаленный примерно на 1000 св. лет от Солнца и посылающий импульсы через каждые 6,2 мс. В 1991 ученый заметил периодическое изменение частоты прихода импульсов. Его американский коллега Дейл Фрейл подтвердил это открытие наблюдениями на другом радиотелескопе. К 1993 выявилось присутствие рядом с пульсаром PSR 1257+12 трех планет с массами 0,2, 4,3 и 3,6 массы Земли, обращающихся с периодами 25, 67 и 98 сут. В 1996 появилось сообщение о присутствии в этой системе четвертой планеты с массой Сатурна и периодом около 170 лет.

Та легкость, с которой планеты были найдены у первого пульсара, вдохновила радиоастрономов на анализ сигналов и других пульсаров (их сейчас открыто более 1000). Но поиск оказался почти безрезультатным: лишь еще у одного далекого пульсара (PSR 1620-26) обнаружилась планета-гигант в несколько раз массивнее Юпитера. До сих пор планетная система пульсара PSR 1257+12 демонстрирует нам единственный пример планет типа Земли за пределом Солнечной системы.

Считается весьма странным, что вообще рядом с нейтронной звездой обнаружились маломассивные спутники. Рождение нейтронной звезды должно сопровождаться взрывом сверхновой. В момент взрыва звезда сбрасывает оболочку, с которой теряет большую часть своей массы. Поэтому ее остаток – нейтронная звезда-пульсар – не может своим притяжением удержать планеты, которые до взрыва быстро обращались вокруг массивной звезды. Возможно, что обнаруженные у пульсара планеты сформировались уже после взрыва сверхновой, но из чего и как – не ясно. Пока планетные системы нейтронных звезд по причине их непонятного происхождения считают чем-то неполноценным.

Успех Доплер-эффекта: планеты у нормальных звезд.

Первую «настоящую» экзопланету обнаружили в 1995 астрономы Женевской обсерватории Мишель Майор (M.Mayor) и Дидье Квелоц (D.Queloz), построившие оптический спектрометр, определяющий доплеровское смещение линий с точностью до 13 м/с. Любопытно, что американские астрономы под руководством Джеффри Марси (G.Marcy) создали подобный прибор раньше и в 1987 приступили к систематическому измерению скоростей нескольких сотен звезд; но им не повезло сделать открытие первыми. В 1994 Майор и Квелоц приступили к измерению скоростей 142 звезд из числа ближайших к нам и по своим характеристикам похожих на Солнце. Довольно быстро они обнаружили «покачивания» звезды 51 в созвездии Пегаса, удаленной от Солнца на 50 св. лет. Колебания этой звезды происходят с периодом 4,23 сут и, как заключили астрономы, вызваны влиянием планеты с массой 0,47 Мю (для нее уже предложено имя – Эпикур).

Это удивительное соседство озадачило ученых: совсем рядом со звездой как две капли воды похожей на Солнце бешено мчится планета-гигант, обегая ее всего за четыре дня; расстояние между ними в 20 раз меньше, чем от Земли до Солнца. Астрономы не сразу поверили в это открытие. Ведь обнаруженная планета-гигант из-за ее близости к звезде должна быть нагрета до 1000 К. Горячий юпитер? Такого сочетания астрономы не ожидали. Быть может, за колебания звезды была принята пульсация ее атмосферы? Однако дальнейшие наблюдения подтвердили открытие планеты у звезды 51 Пегаса. Затем обнаружились и другие системы, в которых планета-гигант обращается очень близко к своей звезде; термин «горячий юпитер» прочно вошел в обиход.

Поиском экзопланет сейчас занято более 150 астрономов на различных обсерваториях мира, включая самую продуктивную научную группу Дж.Марси и группу М.Майора. Для выработки терминологии и координации усилий в этой области Международный астрономический союз (МАС) создал Рабочую группу по внесолнечным планетам, первым руководителем которой избран американский астроном-теоретик Алан Бос (A.Boss). Предложена временная терминология, согласно которой «планетой» следует называть тело массой менее 13 Мю, обращающееся вокруг звезды солнечного типа; такие же объекты, но свободно движущиеся в межзвездном пространстве, следует называть «коричневыми субкарликами» (sub-brown dwarfs). Сейчас этот термин употребляется в отношении нескольких десятков предельно слабых объектов, найденных в 2000–2001 в туманности Ориона и не связанных со звездами. Они излучают в основном в инфракрасном диапазоне и по массе, вероятно, лежат в промежутке между коричневыми карликами и планетами-гигантами. Ничего определенного о них пока сказать нельзя.

Свойства обнаруженных экзопланет.

Несколько столетий астрономы бьются на загадкой происхождения Солнечной системы. Главная проблема в том, что нашу планетную системы до сих пор не с чем было сравнить. Теперь ситуация изменилась: практически каждый месяц астрономы открывают новую экзопланету; пока это планеты-гиганты, но скоро новые приборы позволят обнаруживать и планеты земного типа. Станет возможной классификация и сравнительное изучение планетных систем. Это значительно облегчит отбор жизнеспособных гипотез и построение правильной теории формирования и ранней эволюции планетных систем, в том числе – Солнечной системы.

На 1 сентября 2001 статистика исследований экзопланет такова:

поиск планет произведен приблизительно у 1000 звезд; это почти все звезды в окрестности 30 пк от Солнца;

у 58 звезд обнаружены планетные системы, содержащие от 1 до 3 планет, всего обнаружено 68 экзопланет;

минимальная масса экзопланеты (M sin i), обнаруженной рядом с нормальной звездой, равна 0,15 Мю;

обнаружены планетные системы у двух радиопульсаров, причем в одной из этих систем (PSR 1257+12) присутствуют планеты земной массы;

заподозрены планеты еще у дюжины звезд;

орбитальные периоды обнаруженных экзопланет лежат в диапазоне от 3 сут до 7 лет, а большие полуоси орбит – от 0,04 до 3,7 а.е.;

эксцентриситеты орбит экзопланет лежат в диапазоне от 0,0 до 0,93; при этом орбит с большим эксцентриситетом оказалось довольно много (в отличие от Солнечной системы, где большие планеты движутся по почти круговым орбитам);

амплитуда наблюдаемых колебаний лучевой скорости звезды под виянием планеты от 10 м/с (инструментальный предел) до 2 км/с;

ближайшая экзопланета обнаружена у звезды Эпсилон Эридана, на расстоянии 10 св. лет от Солнца. Она чуть меньше Юпитера и обращается на расстоянии 3,3 а.е. от звезды чуть менее массивной и менее горячей, чем Солнце;

лишь в одном случае (звезда HD 209458) Земля оказалась почти в плоскости орбиты экзопланеты (i = 85,2 град.). Поэтому астрономы систематически, дважды в неделю, наблюдают прохождения экзопланеты перед звездой, вызывающие неглубокие (1,5%) затмения. Это позволило очень точно установить орбитальные и физические параметры планеты и звезды. В частности, имея массу 0,69 Мю, планета в 1,54 раза больше Юпитера по размеру. Это не удивительно, если учесть, что она обращается на расстоянии всего 0,045 а.е. от звезды, немного более массивной и яркой, чем наше Солнце. В таком положении планета должна быть весьма горячей и иметь протяженную атмосферу.

В целом обнаружение первых внесолнечных планетных систем стало одним из крупнейших научных достижений 20 столетия. Решена важнейшая проблема – Солнечная система не уникальна; формирование планет рядом со звездами – это закономерный этап их эволюции. В то же время становится ясно, что Солнечная система нетипична: ее планеты-гиганты, движущиеся по круговым орбитам вне «зоны жизни» (область умеренных температур вокруг Солнца), позволяют длительное время существовать в этой зоне планетам земного типа, одна из которых – Земля – имеет биосферу. По-видимому, другие планетные системы редко обладают этим качеством.

Планеты за пределами нашей Солнечной системы

Экзопланета

Планеты, обращающиеся вокруг звезд, находящихся вне Солнечной системы называются внесолнечные или экзопланеты (от древнегреческого «exo» – снаружи, вне).

Долгое время обнаружение данных планет в огромном космическом пространстве было практически невозможно. Так как планеты вне Солнечной системы очень маленьких размеров по космическим масштабам и в сравнении со звездами весьма тусклы, а сами же звезды расположены на большом расстоянии от Солнца.

Большинство экзопланет обнаружено благодаря различным непрямым методикам детектирования, а не визуальному наблюдению. В результате большая часть открытых планет вне Солнечной системы представляют собой газовых гигантов, более похожих на Юпитер, чем на нашу с вами Землю. Это вполне очевидно и объясняется весьма ограниченными на данный момент методами исследования, в большинстве случаев делающих возможным обнаружение лишь массивных планет с коротким периодом колебания.

Надежные кандидаты

Прямое изображение экзопланет у звезды HR 8799

Прямое изображение экзопланет у звезды HR 8799

Прогресс не стоит на месте, и в настоящее время уже открыто множество планет с массой как у Нептуна и даже меньше. Из 2326 обнаруженных телескопом Кеплер объектов, 207 обладают размером примерно как у Земли, 680 имеют размер СуперЗемли, 1181 — размер Нептуна, 203 — размер, близкий к юпитерианскому, и 55 — больший, чем даже у Юпитера.

На данный момент официально подтверждено наличие 992 экзопланет в 756 внесолнечных системах, в 168 из которых находится более одной планеты. При этом количество так называемых надежных кандидатов в экзопланеты значительно больше, например, согласно проекту «Кеплер» в мае 2013 года данных кандидатов числилось уже 2326. Но для перехода в статус «подтвержденных», такой планете необходимо обладать повторной регистрацией посредством наземных телескопов, что на данный момент практически невозможно осуществить по причине несовершенства имеющегося оборудования.

История открытия первых экзопланет

Экзопланета Kepler 78b в представлении художника

Экзопланета Kepler 78b в представлении художника

Первая внесолнечная планета была обнаружена в 1988 году канадскими астрономами С. Янгом, Б. Кэмпбеллом и Г. Уолкером у субгиганта оранжевого цвета Гамма Цефея A, но подтверждена она была только в 2002 году. Поэтому официально первыми открытыми (и своевременно подтвержденными) экзопланетами, считаются планеты, обнаруженные астрономом Александром Вольшчаном у нейтронной звезды PSR 1257+12 в 1991 году.

Происхождение названий экзопланет

Все вновь открываемые планеты получают название, образующееся из названия звезды, вокруг которой движется эта планета и индекса — строчной буквы латинского алфавита, начиная с буквы «b». Например, 51 Пегаса b. Следующей открытой после нее планете около этой же звезды присваивается индекс «c» и так далее по алфавиту. Индекс «a» при образовании названия экзопланеты не используется, так как в этом случае образованное название должно было бы подразумевать саму звезду. Индексы в названиях присваиваются по порядку открытия экзопланет, а не по мере их удаления от звезды, т. е. планета с индексом «с» может располагаться ближе к звезде обращения, чем планета с индексом «b», т. к. она просто была открыта немного позже.

Как была открыта планета Kepler 78b

Похожие статьи

Понравилась запись? Расскажи о ней друзьям!

Экзопланета

Экзопланеты — это планеты, которые вращаются не вокруг Солнца, а вокруг другой звезды. Их также называют внесолнечными планетами.

Вопрос об экзопланетах в астрономии очень старый. Их существование впервые косвенно засвидетельствовано в 1990-х годах.

В 1995 году первая внесолнечная планета была обнаружена в обсерватории Верхнего Прованса (Мишель Майор и Дидье Келоз). В апреле 2005 г. было уже известно 155 внесолнечных планет. Экзопланеты обнаруживаются двумя методами: методом транзитной фотометрии и методом лучевых скоростей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *